SERVICE MANUAL AUDIONIDEO CONTROL RECEIVER

RX-9010VBK

Area Suffix

J U.S.A.

Contents

Safety precautions 1-2
Importance administering point on the safety 1-3
Disassembly method 1-4
Adjustment method 1-10
Self-diagnose function 1-11
Description of major ICs 1-13~30

Safety Precautions

1. This design of this product contains special hardware and many circuits and components specially for safety purposes. For continued protection, no changes should be made to the original design unless authorized in writing by the manufacturer. Replacement parts must be identical to those used in the original circuits. Services should be performed by qualified personnel only.
2. Alterations of the design or circuitry of the product should not be made. Any design alterations of the product should not be made. Any design alterations or additions will void the manufacturer's warranty and will further relieve the manufacture of responsibility for personal injury or property damage resulting therefrom.
3. Many electrical and mechanical parts in the products have special safety-related characteristics. These characteristics are often not evident from visual inspection nor can the protection afforded by them necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in the Parts List of Service Manual. Electrical components having such features are identified by shading on the schematics and by (Λ) on the Parts List in the Service Manual. The use of a substitute replacement which does not have the same safety characteristics as the recommended replacement parts shown in the Parts List of Service Manual may create shock, fire, or other hazards.
4. The leads in the products are routed and dressed with ties, clamps, tubings, barriers and the like to be separated from live parts, high temperature parts, moving parts and/or sharp edges for the prevention of electric shock and fire hazard. When service is required, the original lead routing and dress should be observed, and it should be confirmed that they have been returned to normal, after re-assembling.
5. Leakage currnet check (Electrical shock hazard testing)

After re-assembling the product, always perform an isolation check on the exposed metal parts of the product (antenna terminals, knobs, metal cabinet, screw heads, headphone jack, control shafts, etc.) to be sure the product is safe to operate without danger of electrical shock.
Do not use a line isolation transformer during this check.

- Plug the AC line cord directly into the AC outlet. Using a "Leakage Current Tester", measure the leakage current from each exposed metal parts of the cabinet, particularly any exposed metal part having a return path to the chassis, to a known good earth ground. Any leakage current must not exceed $0.5 \mathrm{~mA} A C$ (r.m.s.).
- Alternate check method

Plug the AC line cord directly into the AC outlet. Use an AC voltmeter having, 1,000 ohms per volt or more sensitivity in the following manner. Connect a $1,500 \Omega 10 \mathrm{~W}$ resistor paralleled by a $0.15 \mu \mathrm{~F}$ AC-type capacitor between an exposed metal part and a known good earth ground. Measure the AC voltage across the resistor with the AC voltmeter.
Move the resistor connection to eachexposed metal part, particularly any exposed metal part having a return path to the chassis, and meausre the AC voltage across the resistor. Now, reverse the plug in the AC outlet and repeat each measurement. voltage measured Any must not exceed 0.75 V AC (r.m.s.). This corresponds to 0.5 mA AC (r.m.s.).

Warning

1. This equipment has been designed and manufactured to meet international safety standards. 2. It is the legal responsibility of the repairer to ensure that these safety standards are maintained. 3. Repairs must be made in accordance with the relevant safety standards.
2. It is essential that safety critical components are replaced by approved parts. 5. If mains voltage selector is provided, check setting for local voltage.

CAUTION

> Burrs formed during molding may be left over on some parts of the chassis. Therefore, pay attention to such burrs in the case of preforming repair of this system.

In regard with component parts appearing on the silk-screen printed side (parts side) of the PWB diagrams, the parts that are printed over with black such as the resistor (\square) diode () and ICP () or identified by the " 4 " mark nearby are critical for safety.
When replacing them, be sure to use the parts of the same type and rating as specified by the manufacturer. (Except the JC version)

Importance administering point on the safety

For USA and Canada / pour États - Unis d' Amérique et Canada

Disassembly method

■Removing the top cover (See Fig.1)

1. Remove the four screws A attaching the top cover on both sides of the body.
2. Remove the three screws B on the back of the body.
3. Remove the top cover from behind in the direction of the arrow while pulling both sides outward.

■Removing the front panel assembly

 (See Fig. 2 to 4)- Prior to performing the following procedure, remove the top cover.

1. Disconnect the card wire from connector CN400 on the audio board and CN402 on the power supply board in the front panel assembly.
2. Cut off the tie band fixing the harness.
3. Remove the three screws C attaching the front panel assembly.
4. Remove the four screws D attaching the front panel assembly on the bottom of the body. Detach the front panel assembly toward the front.
5. Remove the screw a fixing a bonding ground.

Fig. 2

Fig. 3

Fig. 4

■Removing the rear panel (See Fig.5)

- Prior to performing the following procedure, remove the top cover.

1. Remove the power cord stopper from the rear panel by moving it in the direction of the arrow.
2. Remove the thirty five screws E and a hexagon nut b attaching the each boards to the rear panel on the back of the body.
3. Remove the three screws F attaching the rear panel on the back of the body.

- Removing each board connected to the rear side of the audio board

(See Fig. 6 to 12)

- Prior to performing the following procedure, remove the top cover and the rear panel.

1. Cut off the tie band fixing the harness.
2. Disconnect the connect CN501, CN243, CN205, CN381, CN361 on the DVD board.
3. Disconnect the harness from connector CN721, CN722 and CN723 on the main board.
4. Disconnect the harness from connector CN1 on the antenna unit and remove the antenna unit.
5. Disconnect the harness from connector CN491 on the relay board.
6. Disconnect the tuner board and audio board from connector CN101 and CN301 on the audio board.
7. Pull out the video audio board, video board, S-video board.
8. Disconnect the DSP board from connector CN601 on the audio board.

Fig. 5

Fig. 6

Fig. 8

Fig. 9

Fig. 11

■Removing the audio board

(See Fig. 13 to 14)

- Prior to performing the following procedure, remove the top cover and the rear panel.

1. Disconnect the harness from connector CN813 and CN814 on the main board.
2. Disconnect the card wire from connector CN931 and CN932 on the audio board.
3. Cut off the tie band fixing the harness.
4. Disconnect the relay board from the audio board and the power supply board. (CN71,CN81)
5. Disconnect the card wire from connector CN831 on the main board.
6. Remove the three screws G attaching the audio board assembly.
7. Remove the screw H attaching the audio board assembly.

Fig. 10

Fig. 12

Fig. 14

Removing the main board

- Prior to performing the following procedure, remove the top cover, the rear panel and audio board.

1. Cut off the tie band fixing the harness.
2. Disconnect the harness from connector CN811 on the power supply board respectively.
3. Disconnect the harness from connector CN881 on the main board.

NOTE:
In order to prevent the wire of CN881 from touching to the wire of CN813,the wire of CN881 is secured by tape. This is one of the preventive measures for possible troubles of the remote controller.
When assembling the unit,secure the wire of CN881 with the original tape so as to prevent both wire from touching each other.
4. Remove the four screws I and the two screws J attaching the main board.

Removing the Amp board

(See Fig. 16 to 17)

1. Remove the two screws L attaching the rear side of main board from the heat sink .
2. Remove the ten screws K attaching each amp board from the heat sink.

Fig. 15

Fig. 16

Fig. 17

■ Removing the power transformer

(See Fig.18)

- Prior to performing the following procedures, remove the top cover.

1. Unsolder the two harnesses connected to the power transformer.
2. Disconnect the harness from connector CN55 and CN56 on the power transformer board.
3. Remove the four screws M attaching the power transformer.

- Removing the power / fuse board
(See Fig.18)
- Prior to performing the following procedure, remove the top cover and the rear panel.

1. Remove the screw N attaching the power / fuse board.
2. Unsolder the power cord and other harnesses connected to the power / fuse board.

■ Removing the power supply board

(See Fig. 19 to 20)

- Prior to performing the following procedure, remove the top cover and the front panel.

1. Remove the one nut attaching the headphone jack of the power supply board on the front side of the body.
2. Disconnect the card wire from connector CN402 on the power supply board.
3. Remove the three screws O attaching the power supply board and pull out the power supply board from the front bracket backward.
4. Unsolder the three harnesses connected to the power supply board.

Fig. 18

Fig. 19

Fig. 20

■Removing the system control board / power switch board (See Fig. 21 to 23)

- Prior to performing the following procedure, remove the top cover and the front panel assembly.

1. Pull out the volume knob on the front side of the front panel and remove the nut attaching the system control board.
2. Remove the two screws P attaching the power switch board.
3. Remove the two screws Q attaching the switch board.
4. Remove the cords from the three hooks a.
5. Remove the eight screws R attaching the system control board on the back of the front panel.
6. On the back of the front panel, release the four joints by pushing the joint tabs inward.
Remove the operation switch panel toward the front.
7. Disconnect the harness from connector CN420 and CN422 on the system control board.
8. Release the two hooks \mathbf{b} attaching the system control board.

Fig. 22

Fig. 23

System control board reverse side

Fig. 24

Adjustment method

Power amplifier section

Adjustment of idling current

Measurement terminal
B2204-B2205(Lch), B2213-2214(Rch)
Adjustment volume

Attention

This adjustment does not obtain a correct adjustment value immediately after the amplifier is used (state that an internal temperature has risen).
Please adjust immediately after using the amplifier after turning off the power supply of the amplifier and falling an internal temperature.
<Adjustment method>

1. Prior to turning the power ON, fully turn the adjusting resistor (VR787(Lch),VR788(Rch)) counterclockwise direction and connect the DC voltmeter to the measuring terminal(B2204-B2205(Lch), B2213-2214(Rch)).
2. Set the surround mode OFF.
3. Adjust the resistor so that the measured value becomes 2 mV immediately after turning the power ON.
4. When the idling current has been stable (about 30 minutes after the power is turned ON), confirm that the measured value falls within $1.0 \mathrm{mV}{ }^{`} 10 \mathrm{mV}(2.3 \mathrm{mV})$.

* It is not abnormal though the idling current might not become 0 mA even if it is finished to turn variable resistance (VR787,VR788) in the direction of counterclockwise.

Self-diagnose function

1. Detection of abnormal power supply and voltage

- When the power is turned ON, if an abnormality is detected during the signal input at the A/D port (IC901, pin 2-5, 7) for one second continuously, the status will become STANDBY mode immediately.
- When the power is turned ON again, detection of abnormal power supply and voltage will not be carried out during the first 4 seconds.
- Given below is a list of threshold values at the detection of abnormalities.

	At abnormal state (Low voltage)	At abnormal state	At abnormal state (High voltage)
Pin 2	Analog value	Analog value	Analog value
Micro-computer+5V	$0-2.2 \mathrm{~V}$	$2.2-2.8 \mathrm{~V}$	$2.8-5.0 \mathrm{~V}$
Pin 3	Analog value	Analog value	Analog value
Digital +5 V	$0-2.2 \mathrm{~V}$	$2.2-2.8 \mathrm{~V}$	$2.8-5.0 \mathrm{~V}$
Pig 4	Analog value	Analog value	Analog value
Analog+5V	$0-2.2 \mathrm{~V}$	$2.2-2.8 \mathrm{~V}$	$2.8-5.0 \mathrm{~V}$
Pin 5	Analog value	Analog value	Analog value
+12 V	$0-2.2 \mathrm{~V}$	$2.2-2.8 \mathrm{~V}$	$2.8-5.0 \mathrm{~V}$
Pin 7	Analog value	Analog value	Analog value
Tuner+9V	$0-2.2 \mathrm{~V}$	$2.2-2.8 \mathrm{~V}$	$2.8-5.0 \mathrm{~V}$

2. Initial setting on ship

-To gain the initial setting on ship, put the power plug in the socket while pressing DOWN key and UP key together simultaneously, then turn the power ON.

3. Test mode

- To enter the test mode, put the power plug in the socket while pressing EFFECT key and UP key together simultaneously, then turn the power ON.
-Workings of test mode:
(1) All FLs are turned ON for 3 seconds. (the FLs, which are divided in two groups, are turned ON alternatively)
(2) Faster volume UP/DOWN operation can be achieved with the remote controller.
- When the power is turned OFF, the test mode will be released.
-The FL display returns to normal after the three seconds. Then the STANDBY LED is turned ON (flashing ON and OFF for each one second) to show the present status being a test mode.

4. Self-diagnose

- To enter the self-diagnose mode, put the power plug in the socket while pressing SETTING key and UP key together simultaneously, then turn the power ON. With the UP/DOWN key operation, DSP microcomputer, ROM No.of system microcomputer as well as working status of DSP can be displayed for five seconds. While the working status is being displayed, the followings items can be switched with the UP/DOWN key operation.

VERSION of system microcomputer \rightarrow Local microcomputer CHO \rightarrow
Local microcomputer $\mathrm{CH} 01 \rightarrow$ Local microcomputer $\mathrm{CH} 2 \rightarrow$
Local microcomputer $\mathrm{CH} 3 \rightarrow$ Local microcomputer CH 4

- When the power is turned OFF, the self-diagnose mode will be released.
- During the self-diagnose mode, the STANDBY LED is turned ON .
(flashing ON for one second then OFF for three seconds)
- FL transient display will be carried out as follows. When the transient display is not carried out, normal display/workings are carried out.

Upper 12345 digits
Lower 12345678910 digits
FL Display

S 00011

2000120900	- Information on VERSION of system microcomputer (IC901) Example : VER1.1 2000/12/9
D $000 \square \square$	- Display of communication information on DSP microcomputer (IC581)
$\square \square \square \square \square \square \square \square \square \square$	
\downarrow 吅	
D $01 \square \square$	- Display of communication information on DIR AK4112A (IC551)
$\square \square \square \square \square \square \square$	
\downarrow	- Display of communication information on DSP XCA56367 (IC501)
D $02 \square \square$$\square \square \square \square \square \square \square \square \square$	
\downarrow	- Display of communication information on CODEC AK4527 (IC571)
D $03 \square \square$	
$\square \square \square \square \square \square \square \square \square$	
$\downarrow \square \square \square \square \square \square \square$	
D 0 4 1 1	
2000120900	- Information on VERSION of DSP microcomputer (IC581)
	Example :VER1.1 2000/12/9

Description of major ICs

AK4527 (IC571) : A/D,D/A Converter
1.Pin layout

2.Block diagram

Block Diagram (DIR and AC-3) DSP are external parts)
3. Pin function (1/2)

AK4527(1/2)

No.	Pin name	1/O	Function
1	SDOS	1	SDTO Source select pin "L" : Internal ADC output, "H" : DAUX input ORed with serial control register if $\mathrm{P} / \mathrm{S}=$ "L".
2	OCKS	I	MCKO Clock frequency select pin "L": MCLK, "H" : MCLK/2. ORed with serial control register if P/S= "L".
3	MIS	1	Connect to GND
4	BICK	1	Audio serial data clock pin
5	LRCK	I/O	Input/Output channel clock pin
6	SDTI1	1	DAC1 Audio serial data input pin
7	SDTI2	1	DAC2 Audio serial data input pin
8	SDTI3	1	DAC3 Audio serial data input pin
9	SDTO	0	Audio serial data output pin
10	DAUX	1	AUX Audio serial data input pin
11	DFS	I	Double speed sampling mode pin "L" : Normal speed, "H" : Double speed, the ADC is powered down. ORed with serial control register if $\mathrm{P} / \mathrm{S}=$ "L".
12	DEM1	I	De-emphasis pin ORed with serial control register if $\mathrm{P} / \mathrm{S}=$ "L"
13	DEM0	1	De-emphasis Pin ORed with serial control register if $\mathrm{P} / \mathrm{S}=$ "L"
14	MCKO	0	Master clock output pin
15	DVDD	-	Digital power supply pin
16	DVSS	-	Digital ground pin
17	$\overline{P D}$	I	Power-down \& Reset pin

	万		When "L", the AK4527 is powered-down and the control registers are reset to default state. If the state of CAD0-1 changes, then the AK4527 must be reset by PDN.
18	XTS	I	X'tal oscillator Select/Test mode pin "H" : X'tal Oscillator selected "L" : External clock source selected
19	ICKS1	1	Input clock select 1 pin
20	ICKS0	1	Input clock select 0 pin
21	CAD1	1	Chip address pin Used during the serial control mode.
22	CADO	1	Chip address pin Used during the serial control mode.
23	LOUT3	0	Lch \#3 analog output pin
24	ROUT3	0	Rch \#3 analog output pin
25	LOUT2	0	Lch \#2 analog output pin
26	ROUT2	0	Rch \#2 analog output pin
27	LOUT1	0	Lch \#2 analog output pin
28	ROUT1	0	Rch \#1 analog output pin
29	LIN-	1	Lch analog negative Input Pin
30	$\mathrm{LIN}+$	1	Lch analog positive Input Pin
31	RIN-	1	Rch analog negative Input Pin
32	RIN+	1	Rch analog positive Input Pin

3.Pin function (2/2)

AK4527(2/2)

No.	Pin Name	I/O	Function
33	VREFL	I	Negative voltage reference Input pin, AVSS
34	VCOM	O	Common voltage output pin,AVDD/2 Large external capacitor around 2.2 LFF is used to reduce power-supply noise
35	VREFH	I	Positive voltage reference input pin,AVDD

BA15218F(IC303, IC304, IC372, IC385, IC384, IC386) : OP AMP.

■ BA7625 (IC201, IC242) : Video selector

A	B	E	MONITOR OUT
L	L	$*$	IN1
H	L	$*$	IN2
L	H	$*$	IN3
H	H	L	IN4
H	H	H	IN5

C	D	E	VOUT1
L	L	$*$	--
H	L	$*$	IN2
L	H	$*$	IN3
H	H	L	IN4
H	H	H	IN5

C	D	E	VOUT2
L	L	$*$	IN1
H	L	$*$	--
L	H	$*$	IN3
H	H	L	IN4
H	H	H	IN5

BA7626 (IC241) : Video selector

A	B	E	MONITOR OUT
L	L	$*$	IN1
H	L	$*$	IN2
L	H	$*$	IN3
H	H	L	IN4
H	H	H	IN5

C	D	E	VOUT1
L	L	$*$	--
H	L	$*$	IN2
L	H	$*$	IN3
H	H	L	IN4
H	H	H	IN5

C	D	E	VOUT2
L	L	$*$	IN1
H	L	$*$	--
L	H	$*$	IN3
H	H	L	IN4
H	H	H	IN5

BU2092(IC402):PORT EXPANDER

1.Terminal Layout

2.Pin Function

Pin No.	Symbol	I/O	Function	
1	Vss	-	Connect to GND	
2	DATA	1	Serial Data input	
3	CLOCK	1	Shift Clock of Data	
4	LCK	1	Latch Clock of Data	
5~16	Q0~Q11	0	Parallel Data Output	
				H
			OUTPUT ON	OFF
17	OE	I	Output Enable	
18	Vdd	-	Power Supply	

MB90088 (IC203) : On screen display controller

1.Terminal Layout

YIN $\square{ }_{1}^{\bullet}$	28	$\square \mathrm{AVss}$
VIN $\square 2$	27	$\square \mathrm{YOUT}$
CIN 3	26	$\square \mathrm{VOUT}$
AVcc $\square 4$	25	\square COUT
IOUT $\square 5$	24	$\square \overline{C S}$
VOC $\square 6$	23	\square SIN
Vcc $\square 7$	22	\square SCLK
EXS - 8	21	\square TEST
XS $\square 9$	20	\square BOUT
HSYNC $\square 10$	19	\square ROUT
VSYNC $\square 11$	18	\square GOUT
EXHSYN $\square 12$	17	$\square \mathrm{VOB}$
EXVSYN $\square 13$	16	$\square \mathrm{XD}$
Vss \square^{14}	15	$\square E X D$

2.Block Diagram

3.Functions

pin	Symbol	I/O	Function
1	YIN	I	Lux signal Input terminal for Superinpause indication
2	VIN	I	Composite video signal input terminal for Superinpause indication
3	CIN	I	Contrast signal input terminal for Superinpause indication
4	AVcc	-	Analog power supply terminal
5	IOUT	O	Color (Lux) signal output terminal
6	VOC	O	Character output terminal
7	Vcc	-	Power supply terminal
8	EXS	I	Clock generater outside circuit terminal for color burst
9	XS	O	
10	HSYNC	O	Horizontal signal output terminal
11	$\overline{\text { VSYNC }}$	O	Vertical signal output terminal
12	$\overline{\text { EXHSYN }}$	I	EXT horizontal signal input terminal
13	EXVSYN	I	EXT vertical signal input terminal
14	Vss	-	GND
15	EXD	I	Dot clock generater outside circuit signal terminal for indication
16	XD	O	
17	VOB	O	Character \& background signal output terminal
18	GOUT	O	Color signal (Green, Red, Blue)
19	ROUT		
20	BOUT		
21	$\overline{\text { TEST }}$	I	Test signal input terminal
22	SCLK	I	Shift clock input terminal for serial transmission
23	SIN	I	Serial data input terminal
24	$\overline{\text { CS }}$	I	Chip select terminal
25	COUT	O	Contrast signal output terminal
26	VOUT	O	Composite video signal output terminal
27	YOUT	O	Lux signal output terminal
28	AVss	-	Analog GND terminal

MAX4018ESD (IC390) : OP AMP.

NJM2285V-W(IC202) : 2-INPUT 3CHANNEL VIDEO SWITCH

■ NJM2406F-X(IC387): SINGLE-SUPPLY COMPARATORS

NJM4580D (IC301) : LPF, Mic and H.phone Amp.
1.Terminal layout

2.Block diagram

■ NJU7241F33(IC411) : VOLTAGE REGULATOR

- PCM2702E-X (IC410) : DIGITAL / ANALOG CONVERTER
1.Pin layout

2. Block diagram

3.Pin function

PIN	Symbol	I/O	
1	XTI	IN	Crystal Oscillator Input.
2	VDDC	-	Digital Power Supply for Clock Generator, +3.3 V.
3	DGNDC	-	Digital Ground for Clock Generator.
4	VDD	-	Digital Power Supply, +3.3V.
5	DGND	-	Digital Ground.
6	D+	I/O	USB Differential Input/Output Plus.
7	D-	I/O	USB Differential Input/Output Minus.
8	VBUS	IN	USB Bus Power (This pin NEVER consumes the USB bus power).
9	DGNDU	-	Digital Ground for USB Transceiver.
10	$\overline{\text { PLYBCK }}$	OUT	Playback flag, active LOW. (LOW: playback, HIGH: idle).
11	SSPND	OUT	Suspend flag, active LOW. (LOW: suspend, HIGH: operational).
12	ZERO	OUT	Zero flag, (LOW: Normal, HIGH: ZERO).
13	TEST3	IN	Test pin 3. Connect to digital ground.
14	TEST2	IN	Test pin 2. Connect to digital ground.
15	TEST1	IN	Test pin 1. Connect to digital ground.
16	TEST0	IN	Test pin 0. Connect to digital ground.
17	VccR	-	Analog Supply for R-channel, +5 V.
18	AGNDR	-	Analog Ground for R-channel.
19	VouTR	OUT	Analog Output for R-channel.
20	AGND	-	Analog Ground.
21	Vcom	-	Common for DAC.
22	Vcc	-	Analog Supply, +5 V.
23	VouTL	OUT	Analog output for L-channel.
24	AGNDL	-	Analog Ground for L-channel.
25	VccL	-	Analog Supply for L-channel, +5 VV.
26	AGNDP	-	Analog Ground for PLL.
27	VccP	-	Analog Supply for PLL, +5 FV.
28	XTO	OUT	Crystal Oscillator Output.

Note:
(1) 3.3V tolerant.
(2) Schmitt trigger input with internal pull-down, 5V tolerant.

■ TC9162AN (IC380) : ANALOG SWITCH

■TC9163AF-X (IC371, IC392) : ANALOG SWITCH

| $n-1$ | 28 | VDD | |
| ---: | :--- | :--- | :--- | :--- |
| VSS | 1 | R-S1 | |
| L-S1 | 2 | 27 | R-S2 |
| L-S2 | 3 | 26 | R-S2 |
| L-S3 | 4 | 25 | R-S3 |
| L-COM1 | 5 | 24 | R-COM1 |
| L-S4 | 6 | 23 | R-S4 |
| L-S5 | 7 | 22 | R-S5 |
| L-S6 | 8 | 21 | R-S6 |
| L-COM2 | 9 | 20 | R-COM2 |
| L-S7 | 10 | 19 | R-S7 |
| L-S8 | 11 | 18 | R-S8 |
| L-COM3 | 12 | 17 | R-COM3 |
| ST | 13 | 16 | DATA |
| GND | 14 | 15 | CK |
| | | | |

TC9164AF-X (IC302, IC391) : ANALOG SWITCH

■ TC9459F (IC381, IC382, IC383, IC393) : Electronic volume control
1.Terminal layout

2. Block diagram

3.Pin function

Pin No.	Symbol	Function	Pin No.	Symbol	Function
1	VSS	Negative power supply pin	13	DATA	Data input pin
2	L-OUT	Volume output pin	14	STB	Strobe input pin
3	NC	No connection	15	NC	No connection
4	NC	No connection	16	CS2	Chip select input pin
5	L-LD1	Loudness tap output pin	17	NC	No connection
6	L-LD2	Loudness tap output pin	18	R-A-GND	Analog GND pin
7	L-A-GND	Analog GND pin	19	R-LD2	Loudness tap output pin
8	NC	No connection	20	R-LD1	Loudness tap output pin
9	CS1	Chip select input pin	21	R-IN	Volume input pin
10	NC	No connection	22	NC	No connection
11	NC	No connection	23	R-OUT	Volume output pin
12	CK	Clock input pin	24	VDD	Positive power supply pin

PQ3DZ53 (IC583) : Regulator IC

■TC74HC4053AF (IC388, IC389) : MULTIPLEXER

CONTROL INPUTS			
INHIBIT	C	B	A
L	L	L	K
L	L	L	H
L	L	H	K
L	L	H	H
L	H	L	K
L	H	L	H
L	H	H	K
L	H	H	H
H	X	X	X

X: Don't Care.

■W24L010AJ-12 (IC511) : CMOS STATIC RAM

1. Pin layout

5	${ }_{32} \mathrm{voo}$
${ }^{16} 6{ }^{2}$	${ }_{31}$ A15
$\mathrm{Al}_{14}{ }^{3}$	30 cs2
$\mathrm{A}^{2} 2 \mathrm{C}^{4}$	${ }_{29} \mathrm{DFF}^{\text {WE }}$
A7 \square^{5}	${ }_{28}{ }^{\text {A13 }}$
${ }_{\text {a } 6} \mathrm{C}^{6}$	${ }_{27}$ A $^{\text {A }}$
${ }_{45}{ }^{7}$	${ }_{26}$ A9
$\mathrm{A}_{4} \mathrm{~L}^{8}$	${ }_{2}{ }^{\text {A11 }}$
${ }_{43} \square^{\text {a }}$	${ }^{24}$ 万 $\overline{\text { E }}$
$\mathrm{A}^{2} \mathrm{C}^{10}$	${ }^{23}$ a10
${ }_{41}{ }^{11}$	22 ¢ $\overline{\text { cs } 1}$
A0 \square^{12}	${ }^{21} \mathrm{D}^{108}$
$101 L^{13}$	20.107
$102 \square^{14}$	19 7106
${ }_{103} 0^{15}$	18 1105
vss $\mathrm{C}_{1} 1$	17104

2. Block diaglam

3. Pin function

SYMBOL	DESCRIPTION
A0 - A16	Address Input
$\mathrm{I} / \overline{\mathrm{O} 1}-\mathrm{I} / \mathrm{O8}$	Data Input/Output
$\overline{\mathrm{CS} 1}, \mathrm{CS} 2$	Chip Select Inputs
$\overline{\mathrm{WE}}$	Write Enable Input
$\overline{\mathrm{OE}}$	Output Enable Input
VDD	Power Supply
Vss	Ground
NC	No Connection

UPD784215AGC132(IC581) : UNIT CPU

1.Pin layout

75	\sim	51		
76				50
2				2
100				26
	1	\sim	25	

2. Pin function

Pin No.	Symbol	I/O	Function
1~8		-	Non connect
9	VDD	-	Power supply terminal
10	X2	-	Connecting the crystal oscillator for system main clock
11	X1	1	Connecting the crystal oscillator for system main clock
12	VSS	-	Connect to GND
13	XT2	-	Connecting the crystal oscillator for system sub clock
14	XT1		Connect VSS
15	RESET	1	System reset signal input
16	AUTO	1	Output of DSP to general-purpose port
17	ERR	1	Output of DSP to general-purpose port
18	Fz96k	1	Output of DSP to general-purpose port
19~22	P03~P06	1	Output of DSP to general-purpose port
23	AVDD	-	Power supply terminal
24	AV REF0	-	Connect to GND
25~32	P10~P17	-	Connect to GND
33	AVSS	-	Connect to GND
34,35	P130, P131	0	Non connect
36	AV REF1	-	Power supply terminal
37,38	RX, TX	0	Not use
39		0	Non connect
40	DSPCOM	1	Communication port from IC901
41	DSPSTS	0	Status communication port to IC901
42	DSPCLK	1	Clock input from IC901
43	DSPRDY	1	Ready signal input from IC901
44		0	Non connect
45,46	MIDIO IN/OUT	I/O	Interface I/O terminal with microcomputer
47	$\overline{\mathrm{MICK}}$	0	Interface I/O terminal with microcomputer of clock signal
48	HREQ	1	HREQ
49	SS	0	System slave select
50,51		-	Non connect
52	$\overline{\text { DSP_RST }}$	0	Reset signal output of DSP
53		-	Non connect
54	$\overline{\text { D_CS }}$	0	Chip select output
55		-	Non connect
56	PD/ DIR	0	Reset signal output
57~63		-	Non connect
64,65	CDTI/CDTO	O/I	Interface I/O terminal with microcomputer
66	CCLK	0	Interface I/O terminal with microcomputer of clock signal
67	$\overline{\mathrm{CS}}$	0	CS
68~70		-	Non connect
71	$\overline{\mathrm{PD}}$	0	Reset signal output
72	GND	-	Connect to GND
73~75		-	Non connect
76	EQ	0	EQ
77	CTR TONE	0	CENTER TONE
78	3D	0	3D-Phonic
79,80		-	Non connect
81	VDD	-	Power supply
82,83		-	Non connect
84	ANA TT	0	Analog./T.TONE
85	LEF_MIX	0	Select 1
86	LEF_OUT	0	Select 2
87	MIX OUT	0	Select 3
88	S_MUTE	0	S.MUTE
89~93			Non connect
94	TEST	-	Test terminal
95~100		-	Non connect

■ LC72136N (IC121) : PLL frequency synthesizer

1. Pin layout

XT	$1 \square^{22}$	XT
FM/AM	21	GND
CE	20	LPFOUT
DI	19	LPFIN
CLOCK	18	
DO	$6 \quad 17$	VCC
FM/ST/VCO	16	FMIN
AM/FM	15	AMIN
	$9 \begin{array}{ll} \\ 9 & 14\end{array}$	
	$10 \quad 13$	IFCONT
SDIN	$11 \quad 12$	

2. Block diagram

3. Pin function

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	I/O	Function	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	I/O	Function
1	XT	1	X'tal oscillator connect (75 kHz)	12	IFIN	1	IF counter signal input
2	$\overline{\mathrm{FM}} / \mathrm{AM}$	0	LOW:FM mode	13	IFCONT	O	IF signal output
3	CE	1	When data output/input for 4pin(input) and 6pin(output): H	14		-	Not use
4	DI	1	Input for receive the serial data from controller	15	AMIN	1	AM Local OSC signal output
5	CLOCK	1	Sync signal input use	16	FMIN	1	FM Local OSC signal input
6	DO	\bigcirc	Data output for Controller Output port	17	VCC	-	Power suplly (VDD=4.5-5.5V) When power ON:Reset circuit move
7	FM/ST/VCO	0	"Low": MW mode	18	PD	0	PLL charge pump output(H: Local OSC frequency Height than Reference frequency. L: Low Agreement: Height impedance)
8	$\overline{\text { AM/FM }}$	\bigcirc	Open state after the power on reset	19	LPFIN	1	Input for active lowpassfilter of PLL
9	LW	I/O	Input/output port	20	LPFOUT	0	Output for active lowpassfilter of PLL
10	MW	I/O	Input/output port	21	GND	-	Connected to GND
11	SDIN	I/O	Data input/output	22	$\overline{\mathrm{XT}}$	1	X'tal oscillator(75KHz)

■ LA1838(IC102): FM AM IF AMP\&detector, FM MPX decoder

1. Block Diagram

2. Pin Function

Pin No.	Symbol	I/O	Function	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	I/O	Function
1	FM IN	1	This is an input terminal of FM IF signal.	16	L OUT	O	Left channel signal output.
2	AM MIX	0	This is an out put terminal for AM mixer.	17	R OUT	O	Right channel signal output.
3	FM IF	1	Bypass of FM IF	18	L IN	1	Input terminal of the left channel post AMP.
4	AM IF	1	Input of AM IF Signal.	19	R IN	1	Input terminal of the right channel post AMP.
5	GND	-	This is the device ground terminal.	20	RO	\bigcirc	Mpx Right channel signal output.
6	TUNED	O	When the set is tuning, this terminal becomes "L".	21	LO	O	Mpx Left channel signal output.
7	STEREO	O	Stereo indicator output. Stereo "L", Mono: "H"	22	IF IN	1	Mpx input terminal
8	VCC	-	This is the power supply terminal.	23	FM OUT	0	FM detection output.
9	FM DET	-	FM detect transformer.	24	AM DET	0	AM detection output.
10	AM SD	-	This is a terminal of AM ceramic filter.	25	AM AGC	1	This is an AGC voltage input terminal for AM
11	FM VSM	0	Adjust FM SD sensitivity.	26	AFC	-	This is an output terminal of voltage for FM-AFC.
12	AM VSM	0	Adjust AM SD sensitivity.	27	AM RF	1	AM RF signal input.
13	MUTE	I/O	When the signal of IF REQ of IC121(LC72131) appear, the signal of FM/AM IF output. //Muting control input.	28	REG	O	Register value between pin 26 and pin28 desides the frequency width of the input signal.
14	FM/AM	1	Change over the FM/AM input. "H" :FM, "L" : AM	29	AM OSC	-	This is a terminal of AM Local oscillation circuit.
15	MONO/ST	0	Stereo : "H", Mono: "L"	30	OSC BUFFER	O	AM Local oscillation Signal output.

